

The role of landfill biogas capture, Australia's largest source of carbon abatement, in a changing policy landscape

Tiana Nairn – Policy Group Manager

LMS Energy

History

Nearly 40 years of unrivalled industry experience

1982 - 2021: Brick Kilns to Energy Innovators

- 1st to capture landfill biogas for fuel use
- 1st to purify landfill biogas for injection into the local gas network
- 1st landfill biogas-to-electricity plant connected to the grid (with EDL)
- Australia's 1st solar projects on landfill
- Australia's 1st EV SuperCharger powered by landfill solar
- Design, engineering and manufacturing undertaken in Australia
- Next generation technologies

Operations Significant IP underpinned by full in-house business model

LMS Energy in 2021 Australia's most successful Waste to Energy company

28 landfill biogas power stations across Australia and New Zealand

- **70 MW** installed capacity
- 500 GWh generated
- Project capacities from **0.5 MW to 8.8 MW**
- Baseload availability > 95%
- Equivalent power for 80,000 households each day
- Additional **3MW of solar PV** on landfill
- 22 landfill biogas flaring projects
- 170PJ of energy reserves (to 2040)

Australian owned Employ 160+ staff and growing

Operate on 50 landfills across Australia and NZ

LMS does not own or operate landfills, we are focused on renewable biogas recovery from waste

Landfill Biogas

ge)

0

Existing "Waste to Energy"

Most of Australia's household waste currently goes to a landfill providing waste to energy recovery

© LMS Energy Pty Ltd

The Modern Landfill

Landfills have evolved from dumps to highly engineered environmental containment systems

The "Old Style" Landfill

- → Highly engineered containment systems
- → Heavily regulated for environmental protection
- → Controls that facilitate biogas collection efficiencies > 85%
- → Only issues where urban development impacts traditional buffer zones
- → Remains the cheapest form of waste management

The Modern Landfill

(>85% biogas capture)

© LMS Energy Pty Ltd

The Modern Landfill

Modern landfills with ~85% gas capture rates and power generation provide an emissions neutral outcome from waste and potentially a net reduction!

Emission reductions

Emission reductions

LMS is the largest Carbon Credit (ACCU) provider in Australia

Over 40 million tonnes of total CO₂e emission reductions achieved to date

LMS is saving ~4 million tonnes CO₂e emissions per year

The policy landscape

SUSTAINABLE G ALS

© LMS Energy Pty Ltd

Policy and market environment

Biogas occurs in a complex policy interplay and awareness of its contribution matters

Energy policy – emissions

State/Territory	2019-20
National	0.72
NSW	0.81
VIC	1.02
QLD	0.81
SA	0.44
WA	0.69
TAS	0.15
NT	0.63
ACT	0.81

http://www.cleanenergyregulator.gov.au/NG ER/Legislation/Measurement-Determination

Energy policy – net zero by 2050

All states are seeking net zero emissions by 2050 under the following key policies

State policy	Interim targets
NSW - Net Zero Plan Stage 1: 2020-2030 (2020)	2030 - 35% below 2005 levels 2030 – no net emissions from organic waste
VIC – Climate Change Strategy (2021)	2025 – 28-33% below 2005 levels 2030 – 45-50% below 2005 levels
QLD – Pathways to a clean growth economy (2020)	2030 – 50% of energy from renewable sources
WA – Western Australian Climate Policy (2020)	Theme based actions for reductions
SA – Climate Change Action Plan 2021-2025 (2020)	2030 – 50% below 2005 levels
 NT – Delivering the Climate Change response: Towards 2050 	Objective based actions for reductions
TAS – New plan underway (existing is for 2017-2021)	2015 – Reached net zero (and maintained since) 2040 – generate 200% of needs from renewable energy
ACT – Climate Change Strategy 2019-2025	2025 – 50-60% below 1990 levels 2045 – net zero

Waste policy The key drivers

The key drivers across waste policies across Australia are:

- 1. The Waste Management Hierarchy
- 2. The Circular Economy

The waste management hierarchy

- Hierarchy often embedded in law
- Landfill biogas capture is typically viewed in the 'disposal' tier – despite energy recovery
- Thermal EfW is typically viewed as 'recovery'
- Waste levies are used to reinforce the hierarchy

The circular economy

Involves:

- ✓ Redesign, eg
 - design for longevity
 - design for repair
 - design for reuse in manufacture
 - design for material recovery
- ✓ Reuse
- ✓ Repair
- ✓ <u>Recycling and recovery (including energy)</u>

The circular economy

The need for, and opportunities presented by, a circular economy are gaining momentum in Australia – for example:

- 2017 Benefits of a Circular Economy in SA
- 2018 Senate Committee recommendation* National Waste Policy
- 2019 NWP Action Plan

QLD Waste Management and Resource Recovery Strategy

2020 – WA Closing the loop: Waste reforms for a circular economy
 Recycling Victoria: A new economy
 NSW Circular Strategic Plan 2020-23
 ACE Hub, NSW Circular, CEBIC (Vic)

* Australian Senate Environment and Communications References Committee (2018) Never waste a crisis: the waste and recycling industry in Australia – recommendation 1

Waste policy outcome – thermal EfW Considering end fates for residual wastes as we transition ...

Landfill biogas has not been well recognised in waste policy to date

Under current approaches, thermal EfW proposals are expanding rapidly

A selection of proposals	Proposal volume (t)
NSW – at least 6 proposals	~1,800,000
VIC – at least 4 proposals	~1,350,000
QLD – at least 1 proposal	~500,000
WA – at least 2 facilities under construction	~700,000
Total tonnes	~4.35M

These proposals would result in over 15% of waste currently sent to landfill in Australia being disposed at thermal waste to energy plants

Waste policy outcome – organic waste trends

- Waste policies seek that we:
 - \circ Halve the generation of food waste by 2030
 - $\circ~$ Halve organic waste to landfill by 2030
- This will result in <30% organic waste content in residual streams by 2030

Waste policy outcome – organic waste trends

- Organic waste diversion is a focus for all states, eg:
 - NSW invested \$105.5 million to boost food and garden organics recycling in 2017-2021, and more to come?
 - $\,\circ\,$ VIC has committed to FOGO for all households by 2030
 - **QLD** is developing an Organic Waste Action Plan
 - SA has widespread FOGO already and is to spend another \$7.7 million over the next 3 years to further expand
 - WA has committed to all Perth and Peel households to move to a 3-bin FOGO system by 2025
 - $\,\circ\,$ TAS is releasing organics research outcomes and strategy in late 2021
 - **ACT** is introducing FOGO for all households from 2023

Councils with FOGO have less organic waste in red bins No organic service: 53.6% Green waste service: 41.2% FOGO service: 24.8%

Source: Rawtec 2020

Waste policy outcome – avoiding contamination

- Recovery needs to be safe
- Matters to consider include:
 - Heavy metals and other chemicals of concern
 - Emerging persistent contaminants (eg PFAS)
 - $\circ~\mbox{Plastics}$ and microplastics
 - Glass, needles or other 'sharps'

Currently, regulatory approaches are inconsistent between jurisdictions

A herbicide in green waste from a Council caused widespread plant deaths

Organics in a circular economy

OTHER RECYCLING & RESOURCE RECOVERY FARMER/ PRODUCER or œ₽ WtE? LF BIOGAS 500 PROCESSOR COMPOST ORGANICS IN A CIRCULAR ECONOMY © LMS Energy 2020 CONSUME DISTRIBUTOR RETAILER

Seek to maximise the safe capture of materials and energy from both clean and contaminated organic wastes

- FOOD & AGRICULTURAL PRODUCTS

- CONTAMINATED ORGANIC WASTE (i.e. with other rubbish)
- NUTRIENTS
- HEAT
- BIOENERGY

LF BIOGAS = LANDFILL BIOGAS CAPTURE AD = ANAEROBIC DIGESTION

Assessment processes - comparative emissions Working together to ensure net carbon abatement benefits

Modern landfills with >85% gas capture rates and power generation (offsetting fossil fuel generation) provide **an emissions neutral outcome** (and potentially a net reduction)

Combustion WtE facilities can never offer an emissions neutral outcome due to the emissions associated with burning plastics, which are fossil fuels (made from oil)

Emissions (per MWh) from power generation / waste disposal technologies

Assessment Processes – baseline assumptions

Need to cater for landfill gas capture in combustion energy from waste assessments

Case study - Kwinana (WA) Waste to Energy Facility Life Cycle Assessment

CO2e Impact Assessment

© LMS Energy Pty Ltd

Assessment processes – future focus

Combustion WtE has progressively worse emissions outcomes than landfills with 75% biogas capture as organic waste share declines and renewable energy increases

Assessment processes – future focus

These long-term outcomes are being recognised overseas now

"Last year waste incineration gave rise to **13%** of the greenhouse gas emissions associated with electricity generation, even though it provided only **2.4%** of the UK's electricity."

"Denmark wants to cut its greenhouse gas emissions to 70 percent below 1990 levels in the next decade ...

As a result, Denmark intends to reduce its incineration capacity by 30 percent over the next decade ... it will need to close seven incinerators."

Assessment processes – achieving accuracy Asking questions to help ensure we can reach our goals using EfW

- 1. What is the accurate baseline to use in assessing alternative scenarios?
 - What energy capture is occurring at landfills servicing the area?
 - How would modern, well-managed landfills compare?
- 2. What will the grid intensity be over the lifetime of the proposal?
 - Use a grid intensity that relates to the full lifetime, not commencement
- 3. What will the waste makeup be over the lifetime of the proposal?
 - Consider how waste is likely to change over time and what this would mean for the technology's performance

In summary

MS ENERGY Pty Ltd

Identifying what needs to change

WHERE WE ARE

- Economic growth fuels increasing natural resource over-consumption
- Linear economy (take, make, dispose) —
- Toxic materials used in products —
- Non-recoverable materials used in products _
- Large volumes of waste that are unsuitable ____ for recovery as stored and collected

RANSITION

Low demand for recovered materials

DO

- -promote better design choices
- -remove barriers that unreasonably inhibit greater circularity
- create policy incentives for greater circularity
- -recognise waste generators' motivations and needs in pursuing changed behaviours

DON'T

- -enter 20+ year contracts that lock in linear waste fates at a time of rapid changes
- fail to consider differences in wastes to enable proportionate, safe recovery paths TRANSITION

- forget what people value

WHERE WE WANT TO BE

- Economic growth and resource consumption nexus broken
- Circular economy (resources circulate, renewable energy used)
- No toxic materials used in products _
- Only recoverable materials used in products (and in a readily recoverable manner)
 - No 'waste', all materials suitable for recovery as stored and collected
 - Demand for all recovered materials and energy

© LMS Energy Pty Ltd

Summary

Landfill biogas facilities provide positive renewable energy and emissions outcomes from contaminated organic waste

Ensure the **accurate assessment of emissions from mass burning of waste** or risk not reaching emission targets

In the **transition to a circular economy**, overarching environmental outcomes need to be considered

Thank You

Tiana Nairn Policy Group Manager LMS Energy

tiana.nairn@lms.com.au

LMS ENERGY

Biogas Innovatior Powering the Circular Economy Ims.com.au

> CORPORATE HEAD OFFICE 79 King William Road Unley 5061 South Australia T: + 61 8 8291 9000 info@Ims.com.au

© LMS ENERGY Pty Ltd